Questions on Nuclear Physics MS

1. Sketch graph:

Acceptably shaped exponential decay curve drawn (1)

Activity halving every 8 days (1)

2

Description and differences

I contains 53 protons (1)

and 78 neutrons (1)

eg. β are fast electrons/ γ electromagnetic waves (1)

$$\beta$$
 charged; γ uncharged (1)

4

Explanation:

Cat emits β , γ which are hazardous to employees (1)

1

4

Calculation:

 $\lambda = ln2 \, / \, half \, life$

$$= ln2 / (8 \times 24 \times 60 \times 60)$$
 (1)

$$= 1.0 \times 10^{-6} \text{ s}^{-1} (1)$$

Use of activity = (initial activity) $e^{-\lambda t}$

So
$$t = \ln (80/50) \div 1.0 \times 10^{-6}$$
s

$$=4.7\times10^{5}\mathrm{s}$$
 (1)

(= 5.4 days)

Assumption:

or daughter product not radioactive

[12]

2. Nuclear equations

$$X = 2(1)$$

$$Z = 2(1)$$

Physics of nuclear fission and fusion

Any 5 from the following:

- either/both transform mass into energy
- products formed have greater binding energy/nucleon
- either/both reaction(s) have a mass defect
- fission splitting nucleus; fusion joining nuclei together
- fission used in nuclear reactors; fusion reactors not yet available [or only in bombs/stars]
- fusion needs high pressure and temperature/high energy particles
- fission forms radioactive products AND fusion forms stable products
- explanation of either involving strong nuclear force

Max 5

[7]

3. Calculation of age of the Moon

Any six from:

$$\lambda = \ln 2 / \text{half-life (1)}$$

$$= \ln 2 / 1.3 \times 10^9 \text{ y}$$

$$5.3 \times 10^{-10} \text{ y}^{-1}$$
 (1)

Original mass of ${}^{40}K = 0.10 + 0.840 = 94 \mu g$ (1)

Use of
$$N = N_0 e^{-\lambda t}$$
 (1)

So
$$0.10 = 0.94 e^{-\lambda t}$$
 (1)

So
$$ln(0.10/0.94) = -\lambda t$$
 (1)

So
$$t = 4.2 \times 109 \text{ y (1)}$$

[A valid assumption may be given a mark]

[Max 6]

4.	Binding energy		
	Energy released when separate nucleons combine to form a nucleus (1)	1	
	[OR energy required to split nucleus into separate nucleons]		
	Binding energy of a nucleus of uranium-235		
	Reading from graph: $7.2 \pm 0.2 \text{ MeV}$ (1)		
	Hence binding energy = $7.2 \times 10^6 \times 235 = 1.7 \times 10^9 \text{ eV (1)}$	2	
	[Second mark is for multiplying graph reading by 235]		
	Energy released		
	Half-sized nucleus has binding energy/nucleon = 8.2 ± 0.2 MeV (1)		
	so released energy/nucleon = $(8.2 - 7.2) \times 10^6 \times 1.6 \times 10^{-19}$		
	$(=1.6 \times 10^{-13} \text{ J}) (1)$		
	Total energy released = $235 \times 1.6 \times 10^{-13} \text{ J} = 3.8 \times 10^{-11} \text{ J}$ (1)	3	
	Energy released by fission		
(2).6	$\times 10^{24} \times 4.0 \times 10^{-11} J = 1.0 \times 10^{14} J$		
	[Allow e.c.f from candidate's numbers, within range] (1)	1	
			[7]
5.	Nuclear radiation which is around us		
	Background (1)	1	
	Source of radiation		
	e.g. Sun / rock (eg granite) / cosmic rays [not space] / nuclear power stations (1)	1	
	Why exposure greater today		
	Nuclear power stations/nuclear bomb tests/X-rays/ Radon from building materials (1)	1	
	Beta radiation		
	(i) Any two from:		
	 γ more difficult to shield 		
	• β lower range (than γ)		
	• β more ionising (than γ) (1) (1)		
	(ii) α stopped by a few cm of air or has a short range/much lower range (than β) / β radiation has a long range (1)	3	
	Why gamma radiation is suitable		
	Any two from:		
	· γ will pass through (metal of) wing / α and β cannot pass through the wing		
	but passes more easily through cracks		
	hence crack shows as darker mark on photo or increased count on detector (1) (1)	2	[8]

6. Plutonium-238

238 protons + neutrons [OR nucleons] in the (nucleus of the) atom (1)

1

Why plutonium source caused concern

If accident at launch, radioactive Pu would be spread around Earth (1)

1

Activity of plutonium source

$$\lambda = \ln 2/88 \times 3.16 \times 10^7 \text{ s} = 2.5 \times 10^{-10} (\text{s}^{-1}) (1)$$

Use of $dN/dt = -\lambda N$ (1)

=
$$2.5 \times 10^{-10} \,\mathrm{s}^{-1} \times 7.2 \times 10^{25} = 1.8 \times 10^{16} \,\mathrm{(Ba)}$$
 (1)

3

Power delivered by plutonium

Use of power = activity \times energy per decay (1)

=
$$1.79 \times 10^{16} \text{ Bq} \times 5.6 \times 10^6 \times 1.6 \times 10^{-19} \text{ s}$$

[conversion of MeV to J] (1)

$$= 1.6 \times 10^4 \, (W) \, (1)$$

3

 $[2 \times 10^{16} \text{ Bq gives } 1.79 \times 10^4 \text{ (W)}]$

Whether power can be relied upon

Large number of nuclei present, so decay rate (almost) constant (1)

1

Percentage of power still available after 10 years

Percentage =
$$N/N_0 \times 100 = 100 \text{ e}^{-\lambda t}$$
 (1)

=
$$100 e^{-10 \times \ln 2/88} = 92\%$$
 (1)

2

[After 10 y, $N = N_0 e^{-\lambda t} = 7.2 \times 10^{25} \times 0.92 = 6.65 \times 10^{25}$ (1)]

Why plutonium was chosen for Cassini mission

Examples:

- long (enough) half–life for duration of mission
- Power constant / no orientation problems compared with solar
- α -emitting, so energy from particles easily transferred
- availability (1)

[12]

7. Why gamma radiation used

 γ is the <u>most/more</u> penetrating (1)

1

1

(OR α/β less penetrating)

Factors controlling amount of radiation

Any 2 from:

- Strength/type of radiation source/half-life/age of source
- speed of conveyor belt/exposure time
- shape/size of food packages/surface area
- distance from radiation source (1) (1)

Max 2

Suitable material for wall

Concrete/lead (1)

Suitable thickness

30 cm - 1 m/1 - 10 cm (1) [thickness mark dependant on named material]

2

1

Source of natural radiation

Rocks, soil, cosmic rays, named radioactive element, sun, space, air (1)

[6]

8. Age of part of the stalagmite

$$\lambda = ln2/t_{1/2} = 1.2 \times 10^{-4} \text{ years}^{-1} (= 3.8 \times 10^{-12} \text{ s}^{-1}) (1)$$

Use of
$$N = N_0 e^{-\lambda t}$$
 (1)

$$1 = 256 e^{-1.2 \times 10 - 4t}$$

[allow 255 instead of 1 for this mark but do not carry forward]

$$t = 46\,000 \text{ years } (= 1.45 \times 10^{12} \text{ s}) \text{ (1)}$$

3

[OR recognise 1/256 (1)

8 half-lives (1)

45 800 years (1)]

Carbon-14 concentration

Carbon-14 measurement would be greater (1)

1

Validity of radio-carbon dating

3 points, e.g.

- · not valid
- twice original concentration gives greater proportion measured now
- object seems younger than it actually is
- older parts could have more carbon-14 than younger parts
- technique relies on constant levels, therefore unreliable
- mixture of old and young carbon-14 in 1 stalagmite makes dating impossible (1) (1) (1)

[7]

9. Proton numbers:

1

3

Fuel for the power station:

- (i) (Nuclear) <u>fission</u> (of ²³⁵U) (1)
- (ii) Absorption of a neutron by $(^{238})$ U(followed by β -decay) (1) [**not** bonding, **not** fusion, allow combining] [Any other particle mentioned in addition to neutron loses the mark]

2

Calculate emission rate:

Use of
$$\lambda = \ln 2 / t_{1/2}$$
 [allow either Cs $t_{1/2}$] (1)

See
$$1.5 \times 10^6$$
.e ^{-0.023×20} [allow ecf of λ for this mark] (1)

Correct answer
$$[9.5 \times 10^{5} (\text{Bq m}^{-2})]$$
 (1)

$$[2040(Bg m^{-2}) scores 2/3]$$

OR

Work out number of half lives (1)

Use the power equation (1)

Correct answer (1)

3

Example of calculation:

$$\lambda = \ln 2 / 30 = 0.023 \text{ yr}^{-1}$$

$$R = 1.5 \times 10^6 .e^{-0.023 \times 20} Bq m^{-2}$$

$$R = 9.5 \times 10^5 \text{ Bq m}^{-2}$$

Assumption:

the only source in the ground is 137 Cs / no 137 Cs is washed out of(1) soil / no clean-up operation / no further contamination / reference to weather not changing the amount

1

Scattered isotopes:

$$(^{131})$$
I and 134 Cs (1)

For either isotope: many half lives have passed / half life short compared to time passed / short half life therefore **now** low emission (1)

2

Comment:

Even the isotopes with a thirty year half life are still highly radioactive [eg accept strontium hasn't had a half life yet] (1) Plutonium will remain radioactive for thousands of years (as the half life is very large) [accept the alpha emitting isotopes for plutonium] [accept plutonium half lives much longer than 20 years] (1)

[11]

10. 3 (1)

Sum of reactant mass nos. = 236. Products must have same total mass no. (1)

2

2

Actual mass of products is slightly less (by Δm) than mass of reactants, and products have more kinetic energy (ΔE) than reactants. The two are related by

 $\Delta E = c^2$ where c is the speed of light (1)

2

[Explanation in terms of binding energy is also acceptable]

$$N/N_0 = e^{-\lambda t}$$

$$\lambda = \ln 2/t \frac{1}{2} = 2.84 \times 10^{-5} \text{ years } (1)$$

$$\lambda t = 2.84 \times 10^{-2}$$
 (1)

$$N/N_0 = e^{-(2.4 \times 10^{-2})} = 0.97$$
 (1)

3

1

1

The products of the decay will themselves be radioactive so will contribute to the overall activity of the sample (1)

[9]

11. Number of protons and neutrons in isotope of cadmium

Protons: 48 (1)

Neutrons: (122 - 48) = 74 (1)

2

Process which occurs in a fission reaction

3 points, e.g.

- starts with large/heavy nucleus/atom
- nucleus captures/absorbs neutron
- (becomes) unstable

- splits into (two) smaller nuclei (and more neutrons)
- with emission of energy (from mass defect)
- increased binding energy (per nucleon) (1) (1) (1)

3

Calculation of change in mass

Use of $\Delta E = c^2 \Delta m$ (1)

$$\Delta m = \Delta E/c^2$$

$$\Delta m = 3.2 \times 10^{-11} \text{ J/}(3 \times 108 \text{ m s}^{-1})^2$$

$$=3.6\times10^{-28}$$
 kg (1)

2

Calculation of number of fissions required each second

Correct use of efficiency (1)

e.g. fission energy required = $660 \text{ MW} \times 100/30 = 2200 \text{ MW}$

No. of fissions per second =
$$2200 \times 10^6 \text{ J}/3.2 \times 10^{-11} \text{ J} = 6.9 \times 10^{19} \text{ (1)}$$

2

Why it is necessary to have a lot more fuel in nuclear reactor

2 points, e.g.

- reactor needs to run for longer than 1 second
- need sustained chain reaction
- fuel must last for years
- only a small proportion of U-235 undergoes fission
- only small proportion of uranium is U-235
- greater certainty/frequency of neutron collisions (1) (1)

2

12. Warm river

How radioactive nuclei heat,

e.g. by decay/ionising/nuclear radiation

1

α , β and γ radiation

 α helium nucleus [or equivalent] (1)

 β (fast) electron (1)

 γ electromagnetic wave (1)

[Accept an answer that fully differentiates between the types of radiation by describing their properties]

3

Most hazardous nuclei

 α emitting (1)

When ingested, a particles damage body cells

[e.c.f. from previous β or γ linked to penetration & damage] (1)

2

1

Source of radioactivity

e.g. rocks, Sun, cosmic radiation

[7]